Functional determinants of radial operators in AdS 2

Abstract We study the zeta-function regularization of functional determinants of Laplace and Dirac-type operators in two-dimensional Euclidean AdS 2 space.More specifically, What can Analysis of the Organizations’ Web Sites tell us about AI? Comparative Study of the Online Resources operated at Google, Yandex, and Baidu we consider the ratio of determinants between an operator in the presence of background fields with circular symmetry and the free operator in which the background fields are absent.By Fourier-transforming the angular dependence, one obtains an infinite number of one-dimensional radial operators, the determinants of which are easy to compute.The summation over modes is then treated with care so An inexact multiple-recourse hybrid-fuel management model with considering carbon reduction requirement for a biofuel-penetrated heating system as to guarantee that the result coincides with the two-dimensional zeta-function formalism.

The method relies on some well-known techniques to compute functional determinants using contour integrals and the construction of the Jost function from scattering theory.Our work generalizes some known results in flat space.The extension to conformal AdS 2 geometries is also considered.We provide two examples, one bosonic and one fermionic, borrowed from the spectrum of fluctuations of the holographic 14 $$ rac{1}{4} $$ -BPS latitude Wilson loop.

Leave a Reply

Your email address will not be published. Required fields are marked *